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1. INTRODUCTION

A mil itary telecommunications technical control facility is composed of

a group of technical control operators who have the responsibility of re-

storing circuits . When one of the circuits goes down a technical control l er

is ass igned to it to ensure it is repaired and brought up again. In a ~ecen t
- 

. 

study [1], it was po inted ou t that a tec hn ical con trol fac i l i ty can be
I considered as a mul ti server queue ing sys tem. Fur thermore , one possible op-

erating rule for the facility had not previously been considered in the queue-

k ing theory literature . It is the purpose of this paper to present a queueing
a’

model for th i s rule. -

• The rule can be stated as follows : Independen t of the number of circuits

requ ir ing correc ti ve ac tion , one techn i cal con troller per iodi call y leaves the
• facility to perform other work. After he is finished he returns to the facil-

ity. Al though the analysis of this paper assumes onlycr~e of the technical con-

trollers may leave , the extens ion to the s itua tions when more than one may leave
follows via the same sort of analysis.

In queueing theory terminology, the customers are the circuits and the

servers are the technical controllers who are assi gned to the facil i ty. For

• 
the particular operating rule considered above, we will be considering an s

server system where periodically one server leaves the facility to return

sometime in the future. In queuelng theory literature , we are considering a

• system where one of the servers may break down .

The analysis of queueing systems with breakdowns has been considered in the

past. Gayer [2] introduced and used the notion of completion times to analyze

the case where the number of servers equals one. Several other related papers

1 
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have appeared, e. g. Jaiswa l [31 We w ill not mention them all, although one , re-

ference [4] , shoul d be noted as it was the f i rs t paper to cons ider the

- 
mul tiserver case. In that paper , Metrany and Avi-Itzhak considered a system

where all the servers may go away or break down The operating rule under 
-

• consideration in this paper is sort of a hybrid of the rules considered ,jn

[2] and [4]. That is , only one of the s servers leaves the fac ility or brea ks
-

~ down.

In this paper , we gi ve an exac t analys is of the case where the c i rcu its

(customers) are assumed to break cbwn in accordance with a Poisson process

and the length of time required to fix the circuit has an exponential distribu-

• tion. There are s (>1 ) technical controllers (servers) in the facility and

one of them periodicall y leaves the fac ility. We assume that the length of time he

leaves and stays, each has an exponential distribution. In section II we give

an exact analysis of this queueing system. Some numerical examples are given

in section III,as well as several possible approximations. Finally, sec tion
di

IV conta ins some conc l udi ng remar ks.

• •
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II. ANALYSIS 
.

In this section , we give a mathematical analysis of the queueing system

described in section I. Ther.~ are s servers and periodically one of the

servers leaves the system to return at some future• time . 
- 
We assume that

customers arrive to the system in accordance with a Poisson process wi th’

parameter A . The service time of an arrivin g customer has an exponen tial

distribution with mean u~~. For the server who periodically leaves the sys-

tern, we assume the ran~!on var iables representi ng length of time he remains in

S or out of the system I~ve an exponential distribution wi th means and

respectively. All random var iables are assumed to be mutually independen t

and we assume the system has an infinite waiting room.

Let, for n=O ,l ,2,..., and i=O ,l

~n,i 
= Pr~Q=n , Y=i}, (1)

where Q i s the steady state number of customers in the system and
-

‘
S /

(0 if the server away from system
Y =  ~
(~l If the server in system.

If a customer is receiving service when the server decides to leave, the cus-

tomer is returned to the head of the queue. Waiting customers are serviced

on a first-come, first-served basis.

The steady state equations for P~~1 are

~~~~~~~~ = APn_ i ,0+(n+l)liPn+1 ,o+ctPn ,1 ; n5s—2

. - (2)
= AP fl_ l ,O+(s_l)~

Pn+l ,O+cLPn ,l ; n~s-l

- I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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and

(A +fl p +ci)Pn i  = APn_ l ,i + (n+l)lJ Pn+i ,1+t3Pn ,0 ; n~s-l
(3)

(A+sii+ct)P~~1 
= APn_ l ,l +S1iPn+l ,l+~

Pn ,O ; n.~.s -

• where 
~
‘-i o = 

~i 
0. Let, for i=O ,l and z I -< l,

P1(z) = 

~ ~ ~~~ (4)
n=O ‘ -

Mu l tiplying equations (2) and (3) by Zn and combining one gets

(— Az2+(8+A+ (s—l)ii)z—(s-l)ji)P0(z)—c~zP1 (z)

s—l (5)
91(l—z)~~ (n+l-s)P ~

n
n=0 n,O

ii
and

2 s— i
(—Az +(c~+A+Si~)z—5ii)P1(z)-BzP~(z) = ii (l-z) � (n—s)P ~

n (6)
n=O n ,~

These equations can be wri tten in the following matrix equation:
• A(z)P (z) = B(z) (7)

I-

where

[P (z
.4 P(z ) =  i °

- LPi (
~

s-l
~i(l-z) � (n+l_s)Pn 0z~n=0

• B (z) =
s—i

p(l-z) E (n-s )P 1z~
n=O

- fa (z) -c&Z
A (z) = I

[—8 z a 1(z)

wi th ä0(z)=- xz 2+(B+x+(s- l)~ )z- (s - l)~ and a1(z)= -xz 2+(a+x+s~ )z-s u.

_ ----
~~~~~~~~~~~~~ —--• ~~~--
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If det(A(z)) is the determinant of A (z) then the solution for P1 (z),

-. 1=0,1 , is given by

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (8)
det(A(z))

and s-i s-i

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • (9)
det(A(z))

where

S det(A(z)) = a0(z)a1 (z)—ci~z
2 

• (10)

- • 
Thus, the solution depend s on ~~~ (1=0 1 1; n=O ,l,2 ,... ,s— 2) and 

~s-l ,l.

These probabilities may be expressed in terms of P
0 0 and P01. Consider equa-

tions (2) and (3), for n=O ,1,2,. .. ,s-2 we have

I 

P,10 = C0(n)P
00
+C1(n)P01 . ( i i)

and for n=O ,l ,2,. . .  ,s-l
di 

~~~~~~~~ 

= D0(n)P
00

+D1 (n)P 01 (12)

where

njiC0 (n) = (A+~+(n—l hi)C 0 (n — l )— x C 0(n-2 )-c ~D0(n-l)
(13)

• n~iC1(n) = (x+8+(n-l)j i)C 1(n-l)- xC 1(n-2 )-c~D1(n-l)

and

n1A D0(n) = ( x+a+(n— 1)~ )D0(r.— l ) — A D 0 (n - 2 )— ~C0(n-1 )
- 

( 14)

n,jD1 (n) = (A +ca +(n— l)j i)D1 (n - 1)— A D 1(n-2 )— BC 1(n- l)

• 
5 
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with C0(O)=D 1 (O)El , C1 (O) D0(O)EO and for i~O,1 C 1 (n)=D~
(n)EO when n<O. This

- . shows that the solution to the problem rests on determining the two unknowns

P00 and P01. 
—

One equation in these unknown s can be found by the normalizing condition~• ~ 1
that 1s, ~ � P~ .

~ 

= 1. From equatiors (8) and (9), using L’ Hospital’ ,~ rule ,
- - n=O 1=0

one gets (p=A/j i )
I s—i

=

- 
(15)

+ [ ( s — l — n ) C 1 ( n ) + ( s — n ) D 1 (n ) ]P 0l }.

We need to generate another independent equation in P00 and P01S 1.

Let us consider the equation det(A(z)) =O by using Sturm sequences , [5];

one can show there are exactly two roots of this equation in [0 ,1]. Obviously,

one of the roots is equal to one, and note that if s=1 , the other is equal to
I 

zero. Thus , there is exactly one root of det(A(z)) = O in [0,1)-; we denote it
di by z0. Returning to equatiors (8) or (9)) the numerator of each of these

equations must vanish at z0. This gives us two more equations in P0p and P01.
• A li ttle algebra wi ll show that they are equivalent , and so we have

s— i n
- 

• 0 = P~0( ~ [a1 (z0)(n+l-s)C0(n)-ciz0(s-n)D0(n)]z0}n—O (16)

- 
s—i n

+ P~1 {~~ [(a1 (z~)(n+1-s)C 1 (n)-az~(s—n)D 1 (n)]z~}.‘
~
‘ n=O

From equations (15) and (16) we can now give an expression for P00 and Pqi.
For 1=0,1 , let s-l

= Z [ (s — l—n)C ~(n) + (s —n ) D~(n)] (17)

6 
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and s-i - 
-

li.1 = ~ [ai(z ü)(n+l _ s ) C
~

(n) —a z 0 (s_ n) D 1(n)]z 0 (18)
n =0

then
— ( s_ p-a / ( a+

~ ) ) f l i (19)P00

• and
(s-p-o~/(a+~3) )r10 (20)

) YOnl-Y lnO

Al though no simple expression exists for the expected number of customers

in the system, E(Q), one may differentiate equations (8) and (9) to obtain

• the desired result. For compl eteness , we include the resulting expression

2 s-i
E(Q) = ~~~~~~~~~~~~~~~~~~~~~~~~~ ~ (n-s)Pn=O

s~1 (21)

+ [o0(ca~-A4- s ii)-o 1 (a+~)] ~ (n+ 1-s)P 
0

+ø
0

(a+~~) ~ n(n-s ) P 1n=O n, fl~

s— i
+ oo(ct+~

) 2 n(n + i_ s ) P~ ~n=0
where

00 = ~( A — S p ) + a ( A — ( S — l ) p )  
-

• 
01 

= ~~~~~~~~~~~~~~~~~~~~~~~

and the P~~~’ s are found from ( 11), (12), (19) and (20) .

7 
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III. SOME NUMERI CAL EXAMPLE S AND APPROXI MATION S 
-

In this section we give some numerical examples of the results found

in section II , as well as discussing several possible approximations to

the system. Table I gives a comparison of the system for the same traffic
- 

intensity , p=A/p (p=1 ), ari d two different values of s, (s=5 and s=i0). We note

that as ~-~O the system behaves as ans-l server system. -

TABLE I. EXPECTED NUM B ER OF CUSTOMERS IN SYSTEM (E(Q))

0 .25 

— 

.5 .75 1.0

s=5 1.0010 1.0022 1.0037 1.0051 1.0068
.2 s=lO 2.0000 2.0000 2.0000 2.0000 2.0000

1.5086 1.51 60 1.5247 1.5338 1.5447
3.0005 3.0008 3.0012 3.0015 3.0020

4 2.0398 2.0651 2.0965 2.1305 2.1739
4.0059 4.0089 4.0121 4 .0154 - 

4.0190

5 2.6304 2.6987 2.7881 2.8910 3.0330
5.0361 5.0501 5.0659 5.0821 5.1006

6 3.3540 3.5222 3.7577 4.0584 4.5283
6.1519 6.2007 6.2579 6.3189 6.3920

7 4.3816 4.8050 5.4721 6.5106 8.6650
7.5174 7.6685 7.8559 8.0707 8.3473

78 5.7302 6.7425 8.6775 13 .1717 40.7593
9.0976 9.4881 10.0111 10.6802 

11.65638



_ _  
_ _ _ _ _ _ _  

~~~

From thi s table one can see that the system wi th 5 servers is more

sensitive to one of the servers leaving than the system wi th 10 servers .

Of course, this was to be expected since when one server leaves in the five

server system, the total system capacity is reduced by 20%, whereas, in the

other case only by 10%.

Al though a straightforward , standard analysis was presented in sectdon II

development of some simpl e approximations to the system that do

not require finding z0 may be desirable. One approach may be to tend the de-

sired measure of performance (e.g., expected queue l ength , average waiting time)

for an s and s-l server system, and then take the convex combination of these

measures of performance based on the proportion of time the system is operating

like an s server (~~ / (c ~+~~ ) )  and an s—l server system (a/ (ct+~~)). This approach

is not very good , since the traffic intensity may be such that for an s-i

server system , the system blows up. For example , suppose s=5, c~ l , 82 , ~ 1 ,

and A=4; since p=4, the measure of performance , say expected number in the

system, for a 4 server system would be infinite. Thus , taking a convex corn-
‘S bination of this number and the case for s=5 woul d result in an infinite number

of customers in the system. Of course , this is wrong since p< s-cx / (a +~ ) ,  and

thus the Cesaro mean converges.

A more promising approximation is to treat the system as a non-integer

number of servers . That is, consider the system to be an M/M/s’ system when

s’=s-a/(a+~). The only problem wi th this approach is in computing the desired

measure of performance for a non-intege r number of servers. From [7] one can

9

-- 
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express most of the measures of performance in terms of the Erlang Loss

-• Formula , E(s,p), where

- - S— 
p / I

E(s ,p)~~ 
S.

~ 
P’1/j~ -

- • j=0

Thus, the only prob l em is to determine Erlan g ’s Loss Formula for a non-integer

number of servers . As suggested in [8] we use the following extrapolation

- 

formula for this quantity1

s’—[s’]
E(s’ ,p) = E([S’]~~)[ 1s 1 J+1+ P E ([s I ] , p )]  

(22)

when [x] is the greatest integer less than o~’ equal to x. Tables II and III

give a comparison of this approximation with the exact results . The results

are presented for s=5 and s=l0 , and various values of c~ and ~~. We no te that
— for the case where c~=0 or 6=0 the approximation is exact.

di

S

10
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TABLE II. COMPARISON OF APPROXIMATION FOR E( Q) WITH s=5

.25 .5 .75
_

2 APPROX 1.001 5 1.0025 1.0041
EXACT 1.p022 1.0037 1.0051

1.5128 1.5193 1.5292
.3 1.5160 1.5247 1.5338

— 

2.0565 2.0813 2.1181

P 
2.0651 2.0965 2.1305

2.6811 2.7549 2.8649
2.6987 2.7881 2.8910

3.4907 3.6944 4.01 04
3.5222 3.7577 4.0584

4.7529 
- 

5.3544 6.4231

— 

4.8050 5.4721 6.5106

• TABLE III. COMPARISONS OF APPROXIMATION FOR E( Q) WITH s=1O

di 
~~~~~~~a+8) .25 .5 .75

2 APPROX 2.0000 2.0000 2.0000
• EXACT 2.0000 2.0000 

- 
2.3000

3.0007 3.0010 3.0014
• 

- 

.3 3.0008 3.0012 3.0015

4 4.0078 
— 

4.0105 4.0141
4.0089 4.0121 4.0154

- 5.0464 5.0598 5.0774

5.0501 5.0659 5.0821

6 6.1910 6.2414 6.3067
6.2007 6.2579 6.3189 

-

7 7.6480 7.8185 8.0441
7.6685 ~559 8.0707

. 

• 11 - - - - .~~~
A -- —-
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Two points are ininediately discernible from these tables. First ,the approximation

always underestimates the exact results , and second, the approximation is

better for the larger number of servers. In both cases, the approximation

is extremely good and seems to be worst, in a rel ative sense, when a=6.
- • Al though this approximation is extremely good, the only real computa4ionai

problem in the exact analysis is in determining 20) the root of det(A(z))=0

ins ide of [0,1]. A numerical investi gation of the relationship between P00

and P~ revealed a very interesting fact; that is , :

8Pqo ~ caP0~ (23)

where means approximately. Table IV gives some typical resul ts that were - . 

-

used in generating this observation

• TABLE IV. NUMERICAL INVESTIGATION OF THE EQUATION 6P00~czP01 (s=5)

— 

a/6 1/3 P P P P • 3/1 PP O~l — 
0~i O,p Qi

‘S
1 .091928 .27582 .18379 .18380 .27561 .09187

_________ 

.3333 .9999 2.9999

2 .03338 .10017 . 06626 .06636 .09872 .03292

• 
0,0/Pl .3333 .9986 2.9992

3 .01125 .03380 .02146 .02160 .03056 .01020
Pop/p01 .3329 .9933 2.9957

3.9 .00326 .00981 .00518 .00527 .00534 .0017877

.3322 .9825 2.9878

12 
— 
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This relationship suggests another possible approximation~ that is , to

-. 

-

~~ use equations (15) and (23) to solve for P~~ and P01 directly wi thout having

to find z0. Once ~~ and PQ1 are found , Pn i (n=l ,2,... and i=0,1) can be

determined recursively) or expected value measures of performance can be ob-

tained as was done in the case of E(Q) in section II. We note that this

approximation has two advantages over the other one: it is more accurate, and it

can be used to generate the complete probabilit y distribution if required.

The - greater accuracy is shown in Table V. In that table , approximation

I is the one using the non-integer number of servers and approximation II , the

one just suggested.

TABLE V. COMPARISON OF TWO APPROXIMATIONS FOR E(Q) (s=5)

: 
~~~~~~~~~~~~~~~ 

.25 .5 .75
APPROX. I 1.0015 1.0025 1.0041

.2 APPROX . II 1.0021 1.0036 1.0050
- di EXACT 1.0022 1.0037 1.0051

i.5128 1.5193 1.5292
.3 i.515 7 1.5243 1.5335

1.5160 1.5247 1.5338

2.0565 2.0813 2.1181
.4 2.0644 2.0956 2.1295

• 

— ___________ 

2.0651 2.0965 2.1305

2.6811 2.7549 2.8649
.5 2.6973 2. 7860 2.8890

2.6987 2.7881 2.8910

3.4907 3.6944 4.0104
.6 3.5198 3. 7540 4 .0504

3. 5222 3. 7577 4.0548

4.7529 5.3544 6.4231
.7  4.8015 5.4664 6.5050

4.8050 5.4721 6.5106

13
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IV. CONCLUSIONS 
- -

-
_ - In this paper we have presented a queueing model of one possible operating

ruie of a techncial control facility . The numerical examples considered in

section III pointed out serveral interesting facts. First, the effect of one

of the servers leav i ng the faci l i ty for periods of time is more pronounced

when the number of servers is small. Second , the two unknown s, P00 and

are approximately related as 6P0,0 P0,1c~. This fact can be used to give

one possible approximation to the system. Another possible approximation ,
a investigated in section III , is to consider an equivalent system when there

is a non-integer number of servers, s’ wi th s

It is hoped that the exact, as well as approximate, analysis of a possible

operating rule for a technical control facility may provide some insi ghts into

the operati on of such a facil ity as wel l as being used in performing some

trade-off studies for the system.
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